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Abstract—The vast adoption of mobile devices with cameras 
has greatly assisted in the proliferation of the creation and distri- 
bution of videos. For a variety of purposes, valuable information 
may be extracted from these videos. While the computational 
capability of mobile devices has greatly improved recently, video 
processing is still a demanding task for mobile devices. Given 
a network consisting of mobile devices and video-clouds, mobile 
devices may be able to upload videos to video-clouds,  which 
are more computationally capable for these processing tasks. 
However, due to networking constraints, when a video processing 
task is initiated through a query, most videos will  not  likely 
have been uploaded to the video-clouds, especially when the 
query is about a recent event. We investigate the problem of 
minimal query response time for processing videos stored across 
a network; however, this problem is a strongly NP-hard problem. 
To deal with this, wefirst propose a greedy algorithm with 
bounded performance. To further deal with the dynamics of the 
transmission rate between mobile devices and video-clouds, we 
propose an adaptive algorithm. To evaluate these algorithms, we 
built an on-demand video processing system. Based on the mea- 
surements of the system, we perform simulations to extensively 
evaluate the proposed algorithms. We also perform experiments 
on a small testbed to examine the realized system performance. 
Results show the performance of the greedy algorithm is close 
to the optimal and much better than other approaches, and 
the adaptive algorithm performs better with more dynamic 
transmission rates. 

I. INTRODUCTION 

The proliferation of handheld mobile devices and wireless 

networks has facilitated the generation and rapid dissemination 

of vast numbers of videos. Videos taken for various purposes 

may contain valuable information about past events that can be 

exploited for on-demand information retrieval. For example, a 

distributed video processing problem may involve a query of 

a set of mobile devices tofind a specific vehicle in a region 

of a city. Various stored videos within mobile devices, not 

necessarily for the intention of capturing the object of interest, 

may provide valuable information for such queries. However, 

the processing requirements for such applications approach 

the computational limits of the mobile devices. Although the 

computational capacity of mobile devices has greatly improved 

in the past few years, processing (multiple) videos is still 

overwhelming for mobile devices. 

In this paper,  we  consider  wireless  networks  consisting 

of mobile devices and video-clouds. Instead of storing and 

processing videos locally, mobile devices can choose to upload 

videos to more capable devices (e.g., computers with a much 

powerful GPU), which can significantly accelerate video pro- 

cessing. We call these devices video-clouds. However, due to 

This work was supported in part by Network Science CTA under grant 
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the availability gap (the time between when the video is taken 

and when it is uploaded) [1] and when a query is issued, video- 

clouds will not likely have the pertinent video pre-stored, 

especially when the query is about recent events. Therefore,  

to reduce the delay of the on-demand information retrieval 

from videos related to a query, the related videos can be 

processed either locally on the mobile devices or transmitted 

and processed on the video-clouds. 

Based on this use of wireless networks for video processing, 

there are clear scenarios to which this can be applied. Ex- 

ample scenarios are emergency response and video forensics, 

in which authorities attempt  to  identify  objects  or  people  

of interest in videos captured by surveillance  systems  or 

other mobile devices. These devices may have been either 

present or deployed in the time  and  area  of  interest.  In 

these situations, video-clouds can be  deployed  in  this  area 

to support the storage and processing of videos to address on- 

demand information queries about past events. Without video- 

clouds, this process is significantly delayed, resulting in 

serious consequences in the event that the query is not 

addressed satisfactorily. 

As an example, an information query may be the following 

“did a red truck  drive  through  downtown  today?”  Then, 

all related videos stored on either mobile devices or video- 

clouds taken in proximity of the “downtown” area need to 

be processed to detect the presence of a “red truck”.  The 

query will reach all devices in the network andfinds all of the 

related videos based on video metadata (e.g., GPS, timestamp). 

The network needs to determine where to process each video 

(locally or offloaded to video-clouds), and to which video- 

cloud to upload each video. This approach should minimize 

the time required to process all of the related videos, which 

is referred to as thequery response time. 
Unfortunately, the problem of processing pertinent videos 

distributed throughout a network with minimal query response 

time, which is referred to as theprocessing schedulingprob- 

lem, turns out to be a strongly NP-hard problem. To deal with 

this, we design a greedy algorithm with bounded performance, 

which determines whether or not to offload each video, and 

schedules a transmission sequence to offload videos from a 

set of mobile devices before processing the videos. To cope 

with the dynamics of the transmission rate between mobile 

devices and video-clouds during this process, we further 

propose an adaptive algorithm, which makes such decisions 

in runtime. We have built an on-demand video processing 

system. Based on the measurements of the system, we perform 

simulations to extensively evaluate the proposed algorithms. 

We also perform experiments on a small testbed to examine 
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the system performance. The major contributions of this paper 

are summarized as follows. 

• We formulate the processing scheduling problem for on- 

demand video processing to determine the optimal video 

offloading and transmission sequence in terms of 

minimizing the query response time. 

• We design a greedy algorithm with bounded performance, 

which exploits average completion time of nodes as a cri- 

terion to consecutively determine each video offloading. 

The performance of the greedy algorithm is close to the 

optimal and much better than other approaches. 

• We propose an adaptive algorithm with very low message 

overhead to collect information from nodes and then 

determine video offloading during runtime. The adaptive 

algorithm performs better when the transmission rate be- 

tween mobile devices and video-clouds is more dynamic. 

• We build an on-demand video processing system for a 

network of mobile devices and a video-cloud. Experi- 

mental results verify the performance of the designed 

algorithms on the testbed. 

The rest of this paper is organized as follows. Section II 

reviews related work. Section III gives the overview. The 

greedy algorithm is presented in Section IV, followed by the 

adaptive algorithm in Section V. Section VI evaluates the 

performance. Section VII concludes the paper. 

II. RELATED WORK 

The proliferation of mobile devices with  cameras,  such 

as smartphones and tablets, has substantially increased the 

prevalance of images and videos. Images and videos taken 

by mobile devices create opportunities for many applications 

and have attracted considerable attention from research com- 

munities. Much of the research focuses on images. Yanet 

al.[2] studied real-time image search on smartphones.  Qin 

et al.[3] investigated tagging images, integrating information 

of people, activity and context in a picture. Wanget al.[4] 

optimized the selection of crowdsourced photos based on the 

metadata of images including GPS location, phone orientation, 

etc. Huaet al.[5] designed a real-time image sharing system 

for disaster environments. Likamwaet al.[6] investigated the 

energy optimization of image sensing on smartphones. 

Some work focuses on videos. Raet al.[7] designed a sys- 

tem for real-time video processing with computation offload. 

Simoenset al.[8] designed a system for continuous collection 

of crowdsourced videos from mobiles devices using cloudlets. 

Jainet al.[9] proposed video-analytics for clustering crowd- 

sourced videos by line-of-sight. Chenet al.[10] designed a 

response system for uploading crowdsourced videos. However, 

none of these works consider on-demand information retrieval 

from videos of networked mobile devices. 

Mobile cloud computing bridges the gap between the limita- 

tions of mobile devices and increasing mobile multimedia ap- 

plications. Mobile devices can potentially perform offloading 

of computational workloads to either improve resource usage 

or augment performance. MAUI [11] and ThinkAir [12] are 

the system frameworks to support method-level computation 

offloading by code migration. Dynamic execution patterns and 

context migration is investigated for code offloading in [13]. 

Virtual Machine synthesis is exploited for offloading in [14], 

[15]. A few works focus on the latency of mobile offloading. 

Wanget al.[16] considered reducing task completion by adap- 

tive local restart. Kaoet al.[17] optimized the latency with 

energy constraints by task assignment of mobile offloading. 

Unlike existing work that focuses on workload offloading from 

individual mobile devices, the major focus of this paper is 

to optimize the latency of video processing across multiple 

mobile devices and video-clouds through video offloading. 

III. OVERVIEW 

A. The Big Picture 

We consider a wireless network that consists of mobile 

devices and video-clouds, where mobile devices can directly 

communicate with video-clouds via wireless links. When an 

information retrieval query is initiated, videos on the nodes 

related to the query need to be processed to answer the query. 

Note that when we say node or network node, it refers to 

either a mobile device or a video-cloud. In such networks, 

queries can be easily disseminated in the network and then 

parsed at each node tofind the related videos,e.g., based on 

metadata of videos, such as GPS location and timestamp. The 

dissemination and parsing of the queries is important to this 

process but is not the focus of this paper. 

Since mobile devices have limited computational capabil- 

ity, processing videos on mobile nodes may result in long 

processing times, especially when there are many videos to 

be processed. Therefore, besides processing videos locally, 

mobile devices can also offload videos to video-clouds and 

process videos remotely. However, the offload process incurs 

other delays,e.g., the processing delay at the video-cloud and 

communication delay. Moreover, we consider deep learning for 

video processing. Although deep learning (e.g.convolutional 

neural networks) can be greatly accelerated by GPU using 

parallel computing, processing even a single video will fully 

occupy a GPU and thus videos have to be processed sequen- 

tially. Therefore, when a video-cloud is busy processing a 

video, it has to put other videos into a queue. Moreover, we do 

not consider mobile to mobile offloading since mobile devices 

have similar computational capacity and such offloading rarely 

benefits when considering these delays together. 

Moreover, due to the constraints of video processing tech- 

niques (e.g., the feature extraction for action recognition 

requires all frames be available beforehand [18]), nodes can 

process videos only when the  video  has  been  fully  received 
1. Considering this together with the limitation of wireless  

link capacity, when more than one mobile device needs to 

offload videos to the same video-cloud, it is desirable to 

transmit  the  videos  sequentially rather  than  in  parallel such 

1Very large videos can be easily segmented into smaller videos by pre- 
processing based on the change of scene or context for storing and transmis- 
sion. We assume that the videos of mobile devices have already been pre- 
processed. More sophisticated optimization incorporating with pre-processing 
is to be considered in future work. 
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Fig. 1: An example of calculating the completion time of video-clouds 

that the video-cloud can process videos early. Similarly, each 

mobile device should offload videos sequentially as well. For 

example, assuming a node needs to transmit two videos with 

the same size to another node and transmitting one video 

costs timet, if the two videos are transmitted one  by  one, 

the receiver can start processing thefirst video attand the 

second video at2t. However, if the two videos are sent out 

simultaneously, the receiver can only start processing at time 

2t. In addition, it is possible that different video-clouds are 

receiving videos from different mobile devices simultaneously. 

This can be accomplished by assigning different wireless 

channels at video-clouds so as to avoid potential interference. 

These constraints on video processing and communications 

extremely complex the problem of processing videos through- 

out a wireless network, specifically, when we aim to take 

advantage of video-clouds to optimize the query response time. 

 

B. Problem Definition 

To minimize the query response time, which is the time 

required to process all the videos related to the query, we need 

jointly consider several factors: which nodes should process 

which videos, and what transmission sequence to perform the 

video offloading, as each node can only transmit (or receive) 

one video at a time. Theprocessing schedulingproblem is to 

find such a video offloading and transmission sequence that 

minimizes the query response time. The processing scheduling 

problem is NP-hard, which can be proved by reduction toma- 

chine scheduling[19]. Considering the special case where the 

communication delay of videos is zero, processing scheduling 

can be seen as a generalization of machine scheduling with 

the constraint that certain jobs can be only scheduled on some 

machines (i.e., videos stored at a mobile device can only be 

For mobile devices, the assigned videos are the locally stored 

videos excluding offloaded videos.LetT k,k∈  Udenote the 

completion time of nodekand thenT max = maxk∈  U Tk. The 

processing scheduling problem is to minimizeT max. 

C. Completion Time 

First, we investigate how to calculate the completion time 

of nodes with the assignment of videos. Each videoiassigned 

at nodek, has processing delayp i,k and communication delay 

ci,k. Note thatp i,k may vary across different types of queries 

that require different video processing solutions; andc i,k is 

the time from the initiation of the query to when nodekfully 

receives videoi. Notec i,k = 0represents videoiis locally 

stored at nodek. 

Since videos may be scheduled to be processed by video- 

clouds instead of locally by mobile devices, we need to 

account for the communication delay incurred by the offload. 

As a result, the completion time of video-clouds is not simply 

equal to the sum of processing delay of assigned videos. 

Further, a video-cloud, sayk, may also spend time waiting for 

assigned videos. Therefore, for each video assigned tok, we 

check if the video offload tokis completed beforekfinishes 

processing existing videos or previously received videos. If 

the offload is complete, the video-cloud does not incur any 

waiting time, otherwise, the waiting time ofkfor the video 

needs to be included inT k. Therefore,T k is calculated as the 

sum of the processing delay of videos assigned at nodekand 

the waiting time for each video to be offloaded. 

Fig. 1 is an example of calculating the completion time of 

video-cloudkinvolving the offloading of videos with various 

cases of processing and communication delays. In this ex- 

ample, with knowledge of the processing and communication 

delay of each video shown in thefigure, the completion time 

forkcan be calculated byT k =c b,k +p b,k +p c,k, which can 

be interpreted that if nodekspends time waiting for a video, 

then the time before processing the video can be denoted by 

the communication delay of the video. Thus, the calculation 

of the completion time of nod
�
es can be generalized as 

Tk  = max(ci,k + αi,j,kpj,k),(1) 

processed at this mobile device or remotely at video-clouds). where i∈  Vk 
j∈  Vk 

Thus, processing scheduling is NP-hard in the strong sense. 

We do note that there is past work on machine scheduling, 

considering different constraints. However, to the best of our 

knowledge, they do not consider the cost of scheduling a job 

(i.e., the communication delay of an offloaded video) as a part 

of the completion time at the scheduled machine. We will 

show the performance of the scheme that does not consider 

the communication delay in Section VI. 

LetVrepresent the set of videos  stored  in  the  network 

and related to the query,  and  letUdenote  the  set  of  nodes 

in the network.U c denotes the set of video-clouds andU d 

V k denotes the set of videos assigned to nodek, and 

αi,j,k  = 1, ifc j,k    c ≥i,k, otherwise0. Note that (1) can also be 
used to calculate the completion time of mobile devices. 

Since�, for mobile devicek,c i,k  = 0andα  i,j,k  = 1in (1),  Tk 

= i∈  Vk 
pi,k. 

D. Mathematical Formulation 

Supposexis a solution from the solution space for pro- 

cessing scheduling, wherexdetermines which videos each 

mobile device should offload, to which video-clouds these 

videos should be sent, and the transmission sequence of all 
the offloaded videos. The problem�then can be formulated as 

denotes the set of mobile devices, whereU=U c∪ U d. The min max max (ci,k(x) + αi,j,kpj,k) 

query response timeT max is the maximum time to complete 
processing of the assigned  videos among all of the nodes.For 

video-clouds, the assigned videos are the videos stored locally 

and the videos scheduled to be offloaded from mobile devices. 

k∈  U i∈  Vk(x) 
j∈  Vk(x) (2)

 

.α i,j,k = 1,ifc j,k(x)≥c i,k(x),otherwise0, 

∀  k∈  U,∀  i, j∈  V k(x), 
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Fig. 2: Illustration of the greedy algorithm, wheremandnare video-clouds, anduandvare mobile devices. 

whereV k(x)denotes the set of videos to be processed at node 

kof solutionx,c i,k(x)denotes the communication delay of 

videoiunder solutionxandc i,k(x)is subject to the constraint 

that each node can only send or receive one video at any time. 

The processing delay of each video can be easily obtained 

based on the size of video, the node profile, and the execu- 

tion profile of the processing method, as in [11] and [14]. 

Therefore, for a specific node and processing method, the 

processing delay is proportional to the size of the videos 

time. When the completion time among the nodes has less 

variability, it is better to offload videos with small size. Based 

on these intuitions, we design the greedy algorithm, which 

offloads a video from the mobile device with the maximum 

completion time to a video-cloud each step and improves 

Tmax step by step. The algorithm works as follows. 

1. Calculate the completion time for each node according 

to (1), and then calculate the average completion time  

of nodes, denoted as 
(discussed in Section VI). However, the communication delay 
not only depends on the size of videos and the transmission 

� 

T=   �i∈  U Tisi 
 
,(3) 

rate, but also the transmission sequence of the mobile devices where s 
i∈  U  

si 

i denotes the processing rate of nodei. Note 

and the receiving sequence for each of the video-clouds. For 

example, according to solutionx, mobile devicekneeds to 

first offload videoato a video-cloud and then transmit video 

bto another video-cloudm. To calculate the communication 

delay ofc b,m(x), we need  to  determine  when  nodekcan 

start to transmit videobtom, which is  actually  the  time 

when nodekfinishes offloading videoaor the time when the 

video scheduled beforebin the receiving sequence atmis 

received. Therefore, we see the calculation of communication 

delay is nonlinear and thus (2) cannot be further formulated 

by integer linear programming, which can be solved by the 

CPLEX optimizer. To deal with this, we propose a greedy 

algorithm with bounded performance to solve the processing 

scheduling problem. 

IV. GREEDY ALGORITHM 

In this section, we describe the design of the greedy 

algorithm, give the performance analysis and discuss how the 

greedy algorithm can be easily and efficiently implemented. 

A. The Algorithm 

The processing scheduling problem addresses how to of- 

fload videos from mobile devices to video-clouds to minimize 

the maximum completion time for the entire process, which 

equivalently can be seen as averaging the completion time of 

all the nodes. 

Intuitively, it is desirable for video-clouds not to be idle 

since they are able to process the videos faster than the mobile 

devices. Even more preferable is that they are processing and 

receiving videos simultaneously. We consider two situations 

in which this may occur. Initially, the video-cloud may have 

locally stored videos to process; therefore, it is desirable to 

have the mobile devices upload larger videosfirst. This is 

also true when the disparity of the completion time among 

the nodes is the greatest. After several offloading steps, there 

may be some convergence in terms of the average completion 

that the completion time of video-clouds may include 

idle time for waiting for an incoming video. 

2. For the mobile device that has maximum completion 

time, sayi,find the videos that have sizes less than or 

equal to(T max T−)s i. Note thatT max =T i. 
3. Then, this video set is iterated from large to small to 

find thefirst pairing of video and video-cloud such that, 

if the video is offloaded to the video-cloud, it has the 

minimal increase in completion time among all video- 

clouds and its completion time is still less than or equal 

toT. 

4. If there is no valid pair, select the smallest video on 

mobile deviceiand offload it to the video-cloud, say 

m. Video-cloudmis chosen such that the completion 

time ofmis minimal among all video-clouds andT m < 
Tmax after the offloading of the video. 

5. IfT   m    T≥  max    (i.e.,T   max    cannot   be   reduced   by 

offloading videos from mobile devices to video-clouds), 

the process stops; otherwise iterate the process from step 

one. 

Let us use Fig. 2 as an example to illustrate the algorithm. 

There are four nodes in the network, wheremandnare video- 

clouds anduandvare mobile devices. First, each node 

calculates its own completion time. In Fig. 2a, since no videos 

have been offloaded, the completion time is simply the sum of 

the processing�delay of videos. Then, we calculateTaccording 

to (3). In (3),    i�∈  U Tisi  can be seen as the sum of workload at 

each node and i∈  U si is the processing power of all nodes. 
Thus,Tis the weighted average completion time, assuming 
that the future offloading of videos does not incur any idle 

time on any video-clouds and videos can be fragmented to any 

sizes. Therefore,Tcan be seen as a criterion to determine 

video offloading at each step, which avoids overloading the 

video-cloud. 
As aforementioned, videos that are offloaded from mobile 

devicevshould be smaller than(T v −T)s v. In Fig. 2a, these 

ΔTm 
Tmax =T v 

ΔTn 

b 

c a 

ΔTm 

Tmax =T u 

ΔTn 

a 

b 

c 
T< T n +ΔT n 

T> T m +ΔT m 

idletime Tmax =T v 

 
a 

 

 
T< T n +ΔT n 

c 

b 
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videos  areaandc.  For  video  offloading, wefirst consider Lettbe the last time when all video-clouds are busy (idle 

the increase of the completion time of video-clouds (i.e., the 

joint consideration of the workload at the video-cloud and the 
time does count as busy),x= �i∈  V Di 

j∈  U sj 

and letydenote the 

communication delay of the video). Moreover, we consider 

the completion time itself. If it is longer thanTafter the 

assignment of the video, we should choose a smaller video. 

In Fig. 2a, sinceD  a  >  Dc,  whereDdenotes  the  size  of 

the video, videoais considered for offloadingfirst. Although 

processing delay of the video with the largest size at the video- 
cloud, which is scheduled to process the last offloaded video 

(assuming thatT max is determined by a video-cloud). Since 

Tis explored as a criterion to determine video offloading, 

together with (1), we have 
� xsi 

 
 

video-cloudnhas more workload thanm, the offloading of t≤x+  
i∈  Uc 

, (4) 
ri 

videoaresults in less increase in the completion time forn 
than form(i.e.,ΔT n <ΔT m andT n +ΔT n <T), so video 

where,  to  simplify  the  analysis,  we  assume  that  videos of- floaded at a video-cloudiare transmitted at a constant rater i 
� 

ais offloaded to video-cloudn. from mobile  devices. In (4), i∈  Uc 
 xsi gives the worse case 
ri 

After that, we recalculateT. Since the offloading of video 
adoes not incur any idle time at video-cloudn,Tis the same 
as before. As in Fig. 2b, currently,T max =T u and thus the 

of communication delay. Moreover, the last video offloading 

of the greedy algorithm minimizes the completion time at the 
assigned video-cloud am

�
ong all vid

�
eo-clouds. Therefore, 

video offloading will be from mobile deviceu. Althoughnhas Tmax ≤x+   xsi 
+y+

 
ysj

.(5) 

more workload thanm(which meansnmay not have to be idle 
ri 

i∈  Uc 

rj 
j∈  Uc 

in waiting forb), the offloading of videobtonincurs more 

communication delay thanm;i.e.,c b,n =c a,n +D b/ru,n, 

LetT ∗  denote the optimal maximum completion time and 

clearly we have 

wherer u,n denotes the transmission rate betweenuandn, x≤T ∗  

whilec b,m =D b /ru,m , assumingr u,m =r u,n . SinceT< y≤T ∗  . 

Tn  +ΔT n  andT>  T m  +ΔT  m, videobwill be offloaded to Together with (5), we have 
video-cloudm. T    

�
2T ∗  (1 + 

 si 
).(6) 

Due to the idle time ofmincurred by the offloading of 
max ≤ r 

i∈  Uc 

videob,Tincreases as shown in Fig. 2c. To determine the 

assignment of videos, the processing delay at video-clouds 

can be easily calculated, but the communication delay is more 

complicated to compute as discussed before. For example, in 

Fig. 2c,c c,m  = max ca,n,{cb,m  +D c/r} v,m. So, video 

cis assigned atmrather thannsinceT n +ΔT n >T. The 

algorithm terminates with this offloading as the remaining two 
videos on mobile devices are large and the offloading of these 
videos can no longer reduceT max. 

The processing scheduling problem can be seen as balancing 

the completion time at each node. Thus,Tis employed as a 

criterion for video offloading  at  each  iteration,  sinceTcan 

be treated as the optimal average completion time. Moreover, 

at each step, we consider the increase of the completion time 

at video-clouds, which is a joint consideration of the incurred 

communication delay and idle time at video-clouds. There- 

fore, by  regulating  video  offloading  byTand  minimizing 

the increase of completion time at video-clouds, the greedy 

algorithm can reduceT max step-by-step towards the optimal. 

 
B. Performance Analysis 

For each offloading step, the greedy algorithm attempts to 

minimally increase the completion time for the video-cloud. 

However, when the completion time with the minimal increase 

is more thanT, the greedy algorithm chooses to balance 

the completion time among video-clouds to avoid overload. 

Moreover, due to the heterogeneity of processing rates and 

transmission rates, it is hard to give a tight bound on the 

performance of the greedy algorithm. However, we try to 

give some insights on the algorithm performance with the 

variability of these rates. 

From (6), when the processing rate of video-clouds is high, 

the communication delay has a great impact on the completion 

time of video-clouds. Thus, the approximation ratio goes up. 

When the transmission rate is high, the processing delay 

dominates the completion time and then the approximation 

ratio approaches 2. Although  the bound  on the performance 

is not tight, as shown in Section VI, the greedy algorithm 

performs much better than this bound. 

For the computational complexity, as one video is offloaded 

during each iteration, there are at most V| i|terations for the 

greedy algorithm. For each iteration, the videos stored at the 

mobile device with the maximum completion time are iterated 

over video-clouds to minimize the increase in completion 

time. Therefore, the computational complexity of the greedy 

algorithm isO(|U||V| 2). 

C. Discussion 

The greedy algorithm is a centralized approach and requires 

the information of all the videosa priori. When a query is 

initiated, the information (e.g., data size) about videos stored 

in the network and related to the query needs to be collected 

at one node,e.g.a video-cloud, to run the greedy algorithm. 

The solution is then sent to the other nodes. Alternatively, the 

information can be collected at each node and each node may 

run the greedy algorithm. This is feasible, since the informa- 

tion collected is small and the computational complexity of 

the algorithm is low. 

The solution of the processing scheduling problem deter- 

mines which videos are offloaded between mobiles and video- 

clouds. It also determines the transmission sequence, but this 

sequence is shown not to be trivial. For example,  in Fig.  2, 

for mobile devicev, the sending sequence isaand thenc. 

i 
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However,vmay not transmitcimmediately aftera; it must be 

transmitted aftermreceives videobfromu. Therefore, when 

there is a video for which the mobile device cannot locally 

determine the transmission start time, the receiving video- 

cloud will inform the mobile device when it is ready to receive. 

Although such coordination incurs additional communication 

overhead (and idle time), the overhead is low since there is at 

most one message for each offloaded video. 

The greedy algorithm is designed for the scenario where 

mobile devices and video-clouds are stationary (e.g., surveil- 

lance systems) and the transmission rate between them is 

steady (or varies slightly). To cope with the scenario with high 

dynamics of transmission rate, we further propose an adaptive 

algorithm. 

V. ADAPTIVE ALGORITHM 

In this section, we consider the case where the transmission 

rate between mobile devices and video-clouds dynamically 

changes during the on-demand querying of videos process 

(but assume that all nodes stay connected to the network 

during the process). Due to the dynamics of the transmission 

rate, the communication delay of offloaded videos also varies. 

This makes the processing scheduling problem more difficult, 

because we do not know how the transmission rate changesa 

priori. Since the communication delay of an offloaded video is 

only known after the transmission of the video is completed, 

it is better to determine video offloading in realtime in such 

scenarios. Therefore, we propose an adaptive algorithm that 

makes video offloading decisions during runtime, through 

consideration of the transmission rate, the communication 

delay and the completion time. 

A. The Algorithm 

We assume the same query is issued to the network of 

mobile devices and video-clouds. Unlike the greedy algorithm 

which determines video offloading before processing any 

videos, the adaptive algorithm offloads videos from mobile 

devices to video-clouds in realtime. 

Intuitively, to offload videos in runtime, the designed al- 

gorithm should gradually reallocate videos from mobile de- 

vices, balance the workload among video-clouds, and prevent 

video-clouds from being overloaded. Moreover, the adaptive 

algorithm should not incur too much communication overhead, 

which would delay the video transmission. Based on these con- 

siderations, the adaptive algorithm is designed to adapt to the 

dynamics of transmission rate and reduceT max dynamically 

as videos arrive and others are being processed. 

To describe the adaptive algorithm, wefirst give the overall 

workflow and then detail how the video-cloud decides whether 

to accept offload requests from mobile devices and how the 

mobile device decides to which video-cloud to offload the 

video based on replies from video-clouds. 

Upon receiving the query, each node identifies locally stored 

videos related to the query. Then, it broadcasts the information 

about these videos to other nodes and starts to process videos. 

For processing, each mobile device continuously processes 

videos from small to large in size. Each video-cloud can 

process any video it currently has in any order as the order 

will not impact the completion time on the video-cloud. 

For video offloading, each time a mobile device offloads the 

largest video, for which it has not completed processing (i.e., 

it is possible to offload the video that is being processed). 

When a mobile device is ready  to  offload  videos  (i.e.,  it 

is not transmitting any video), it will broadcast an offload 

request to inform all the video-clouds. When video-clouds 

receive an offload request, they will add the request into a 

set of unhandled requests. If the mobile device justfinished 

offloading another video before sending out the request, video- 

clouds will acknowledge the actual communication delay of 

the previously offloaded video and update the information of 

the video-cloud that received that video. 

When a video-cloud is ready to receive videos, (i.e., it is  

not receiving any video), it will determine whether to accept 

the requests it has received and reply the accepted request. 

Based on the replies from video-clouds, the mobile device 

will eventually determine to which video-cloud the video 

should be offloaded. After making the decision, the mobile 

device will broadcast a confirmation message to video-clouds 

to inform them of the selected video-cloud and the estimated 

communication delay of the video, and then start transmitting 

the video. When other video-clouds receive the message, they 

will mark the offload request from the mobile device as 

handled and then update the locally stored information of the 

mobile device and the chosen video-cloud,i.e., change the 

location of the video from the mobile device to the video-cloud 

and add the estimated communication delay for the video. 

This process continues until all videos are processed. 
A video-cloud needs to decide whether to accept received 

requests when it is ready to receive videos, and a mobile 

device needs to decide to which video-cloud to offload the 

video based on the replies from video-clouds. The algorithm 

works as follows. 

1. A video-cloud, saym, which is not currently receiving 

a video, calculates the completion time of each node 

based on the collected information at that time,  

and then calculatesTaccording to (3). 

2. From the set of unhandled requests, it selects the request 

from the mobile device,u, that has the maximum com- 

pletion time among the set. Then, using the current trans- 

mission rate between the mobile device and itself, which 

can be estimated based on signal strength, signal-to-noise 

ratio, etc., video-cloudmcalculates the completion time 

Tm and the increaseΔT m if the video is offloaded tom. 
3. IfT u =T max, video-cloudmwill accept the offload 

request whenT m <T max and then sendT m andΔT m to 
u. IfT u <T max, video-cloudmwill accept the request 

ofuonly ifT m T,≤otherwise,mwill skip the request. 
4. Mobile deviceumay receive multiple replies at the same 

time. It will choose the video-cloud that has the minimal 

completion time if the received completion times are 

more thanT. Otherwise, it will select the video-cloud 

whose completion time is less thanTsuch that the 
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Fig. 3: Illustration of the adaptive algorithm, wheremandnare video-clouds, anduandvare mobile devices. 

increase in the completion time of the chosen video-cloud 

is minimal. 

5. After mobile deviceuselects the video-cloud, it will 

broadcast a confirmation message. When video-clouds 

receive the message, they will update locally stored 

information accordingly as discussed above. The unse- 

lected video-clouds that are ready to receive videos will 

continuously process the unhandled requests if the request 

set is not empty. 

See Fig. 3 as a simple example to illustrate the adaptive 

algorithm. As in Fig. 3a, at timet 1, mobile deviceuis ready to 

offload videos and thus it sends out an offload request of video 

bto video-cloudsmandn. Sincemis currently  receiving 

videoa, it will add the request into the set of unhandled 

requests. Sincenis not currently receiving a video, it will 

calculateT n andΔT n if videobis offloaded to itself based on 

the current transmission rate betweennandu, and then send 

them touas shown in Fig 3b. Whenureceives the reply, it will 

decide to offloadbton, because it only gets one reply. Before 

offloadingbton, it willfirst send out a confirmation message 

as in Fig. 3c. Whennreceives the confirmation message, it 

will setup the connection to receiveb. Meanwhile whenm 
receives the message, it will mark the offload request fromu 
as handled. 

 

B. Discussion 

Since, typically, there are more mobile devices than video- 

clouds in the network, a video-cloud is most likely to decide 

whether to accept a request when itfinishes receiving  a 

video rather than when it receives an offload request. As the 

video-cloud selects the request of the mobile device that has 

the maximum completion time among the set of unhandled 

request, the adaptive algorithm will gradually decreaseT max 

by handling each offload request until it cannot be reduced. 

The confirmation message from a mobile device is designed 
to inform video-clouds that the offload request has been 

between the actual completion time at each video-cloud and 

the estimated will only vary by the actual communication 

delay of one video. Thus, it only slightly impacts the criterion 

Tand the performance of the adaptive algorithm. 

As message overhead can delay video offloading, the adap- 

tive algorithm is designed to produce messages with as little 

overhead as necessary. At the beginning of video processing, 

each node will broadcast a message including the information 

of locally stored videos and thus there will be U| m|  essages. 

As discussed before, the video-cloud will most likely handle 

the request after receiving a video, and thus there is most 

likely one reply for each request. Therefore, for each offloaded 

video, there will be three messages,i.e., request, reply and 

confirmation. In the worse case that all videos are offloaded 

to video-clouds, the overall message overhead of the adaptive 

algorithm is3 |V| |+| U . The small number of messages is 

sufficient to obtain all the information to determine video 

offloading. Moreover, a node needs to compute the completion 

time of all nodes when it (for video-clouds) decides to accept 

the offload request or when it (for mobile devices) selects the 

video-cloud. However, the computation overhead is low, i.e. 
|V|. For the worst case that all videos are offloaded to video- 

clouds, the sum of computation overhead of all nodes is2|V| 2. 

As video-clouds can also communicate with each  other,  

we could consider transfer  of  videos  among   video-clouds 

to balance the workload. However, we decided against this 

because video offloading among video-clouds incurs additional 

communication delay. That means a video might be transferred 

multiple times before being processed and thus increase the 

communication delay. As a result, it might also increase the 

communication delay of other videos due to the  constraint 

that each node can only send or receive one video at a time. 

However, the adaptive algorithm requires only one transfer  

for each offloaded video, and instead of balancing workload 

by  transferring  videos  among  video-clouds,  it  balances the 

handled and the estimated communication delay of the video 

to be offloaded, which will be used to calculateTat each 

video-cloud when it handles other offload requests. The com- 

munication delay is estimated based on the transmission rate at 

the beginning of offloading each video. Since the transmission 

rate may vary during offloading, the actual communication 

delay will be different than what is estimated. However, each 
video-cloud will be notified of the completion of each video 
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offload (by the offloading mobile device) and then the other 

video-clouds can update their previously received estimation 

by the actual communication delay. Therefore, the difference 

Fig. 4: Processing delay and completion time of videos with different sizes for 
mobile device and video-cloud, where videos have the resolution 192×0 1080, 
bit rate 16Mbps, frame rate 30fps, and the transmission rate between mobile 
device and video-cloud is 16MBps. 
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Fig. 5: Comparison between greedy algorithm and optimal solution in terms ofT max/T
∗
 and the value ofT max, where the default setting is|V|= 300, 

|Ud|= 20,|U c|= 3,µ=50MB,σ= 20MB,r=12MB/s,s d = 2MB/s,s c = 100MB/s andγ= 0.6. 

workload when offloading videos from mobile devices to 

video-clouds. 

The adaptive algorithm estimates the communication delay 

of each offloaded video based on the transmission rate just 

before offloading and makes video offloading decision in 

realtime. Therefore, it is more suitable for the scenarios where 

the transmission rate is dynamic during video processing. 

VI. PERFORMANCE EVALUATION 

In this section, wefirst evaluate the proposed algorithms by 

extensive simulations based on the measurements of an on- 

demand video processing system, and then we investigate the 

system performance on a small testbed. 

A. Processing Delay 

First, we evaluate the processing delay of videos in terms  

of data size on mobile devices and video-clouds. We imple- 

mented our video processing approach for object detection and 

recognition based on Caffe [20], a deep learning framework 

using convolutional  neural  networks,  on both tablets (Nexus 

9) and a video-cloud implementation (Dell Precision T7500 

with GeForce GTX TITAN X 12 GB GPU) for processing 

acceleration. We took several videos with different sizes using 

the tablet and processed them on both the tablet and video- 

cloud. Fig. 4a gives the comparison of the processing delay 

between the tablet and video-cloud. From Fig.  4a,  we  can 

see that GPU can greatly accelerate video processing. The 

processing rate on the GPU is about 100MB/s, while the 

processing rate of the smartphone is only about 2MB/s. Both 

linearly increase with the data size of videos. When taking the 

communication delay of  videos into  consideration,  as shown 

generated with different data sizes following normal distri- 

butions with differentµandσ. To capture the heterogeneity 

of the processing rate, the processing rates of mobile devices 

and video-clouds are set uniformly and randomly to between 

[γsd, sd]and between[γs c, sc], respectively, wheres d denotes 

the maximum processing ratio for mobile devices ands c 

denotes the maximum processing rate of video-clouds. Also, 

the transmission rate between a mobile device and a video- 

cloud is set uniformly and randomly to[γr, r]. The number of 

videos|V| , the number of mobile devices |U d , t|he number of 

video-clouds|U c |,r,µ,σ,γ,s d ands c are system parameters 

for simulations. The default settings of these parameters are 

V|  |= 300, |U    d  =|  20, U| c  = 3| ,r= 12MB/s,µ= 50MB, 
σ= 20MB,γ= 0.6,s d = 2MB/s ands c = 100MB/s, where 

the settings ofs d ands c correspond to the implementation 

measurement in the previous section. 

We evaluate the greedy algorithm and  compare  it  with  

the optimum achieved by an exhaustive search in various 

settings. For each setting, we generate one hundred instances 

according to the randomness of simulation setup. The two 

solutions run on these instances. The performance is com- 

pared in terms ofT max/T∗  to demonstrate how the greedy 

algorithm approximates the optimum, and the value ofT max  

is also illustrated. Fig. 5 demonstrates the effects of system 

parameters on the performance of the greedy algorithm. For 

each evaluated parameter, all other parameters use the default 

settings. From Fig. 5a, we can seeT max/T∗  slightly increases 

with the increased number of videos. When using 200 videos, 

the greedy algorithm is less than 10% worse than the optimum, 

and it is less than 20% when using 800 videos. The increase 

in Fig. 4b, the completion time of processing each video 
1600

 
1200 

(offloaded from the tablet) on the video-cloud is still much 

less than that of the tablet. Note that the specifications of 

videos, such as resolution, frame rate and bit rate, may affect 

the processing delay. However, mobile devices have similar 

camera sensors and can be easily adapted to take videos with 

the same specifications. 

B. Greedy Algorithm vs. Optimum 
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gorithms, we setup a simulation environment. The videos are 

Fig. 6: Comparison between greedy algorithm and baseline in terms ofT max, 
where the default setting is V| =|  300, U| d  |= 20, U| c  = 3|,µ= 50MB, σ= 
20MB,r=12MB/s,s d = 2MB/s,s c = 100MB/s andγ= 0.6. 
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Fig. 7: Comparison between adaptive algorithm and greedy algorithm in terms ofT max, where the default setting is V|=|100, U | 
µ= 50MB,σ= 20MB,s d = 2MB/s,s c = 100MB/s,γ= 0.6,t= 5s, andR= [4,8,12,16]. 

d |= 10, U| c = 2|, 

is caused by increased video offloading when there are more 

videos to be processed. Correspondingly, when there are more 

mobile devices in the network, each mobile device has fewer 

videos to process and thus less video offloading. Therefore, 

the greedy algorithm performs better as the number of mobile 

device increases in Fig. 5b. When there is only one video- 

cloud in the network, the greedy algorithm achieves the 

optimum shown in Fig. 5c. The difference rises when the 

number of video-clouds goes up, but it tends toflatten out 

when the number of video-cloud increases further. 

In Fig. 5d, the greedy algorithm performs close to the 

optimum in the settings with different average video sizes. 

Fig. 5e demonstrates the effect of transmission rates. When 

the transmission rate increases, mobile devices tend to offload 

much faster than the baseline that considers only processing 

delay. 

 

D. Adaptive Algorithm vs. Greedy Algorithm 

The adaptive algorithm is designed for the scenarios where 

the transmission rate varies during video processing. To model 

the dynamics of the transmission rate, we also adopt a Markov 

chain [21]. LetRdenote a vector of transmission ratesR= 
[r0, r1, . . . , rl], wherer i < ri+1. The Markov chain moves at 

each time unit. If the chain is currently in rater i, then it can 

change to adjacent rater i−1  orr i+1, or remain in the current  

rate with the same probability. Therefore, for a given vector, 

e.g., of four rates, the transition matrix can be defined as 
r0    r1     r2 r3 

more videos to video-clouds as offloading videos costs less 

than before. This leads to an increased deviation between the 
r0    1/2 

P=   r1     1/3 

1/2 

1/3 

0 0 

1/3 0 . 
 

T decrease. The completion time of video-clouds is deter- r3 0 0 1/2 1/2 

greedy algorithm and the optimum, although bothT max and r2 0 1/3 1/3 1/3 
∗  

 

mined based on the processing delay and communication delay 

of videos. When the processing rate of video-clouds increases, 

the processing delay decreases and thus the greedy algorithm 

performs better as shown in Fig. 5f. Moreover,T max/T∗  also 

declines when mobile devices are more computationally 

powerful as indicated in Fig. 5g, because fewer videos are 

offloaded when mobile devices have higher processing rates. 

The effect of the diversity of processing rates and transmission 

rates is captured in Fig. 5h;i.e., such diversity leads to slightly 

increasedT max and deviation from the optimum. 

In summary, through extensive simulations, we  can  see 

that the performance of the greedy algorithm is close to the 

optimum in various settings (no more than 20% worse than 

the optimum) and it is much less than the theoretical upper 

bound as in (6). 

C. Greedy Algorithm vs. Baseline 

We also compare the greedy algorithm with abaseline 

scheme that does not consider communication delay and 

iteratively offloads a video from the mobile device that has 

the maximum completion time to the video-cloud that has 

the minimum. As illustrated in Fig. 6, the greedy algorithm 

performs much better than the baseline. When the transmission 

rate increases, the impact of the communication delay on the 

completion time decreases and thus the difference between 

these two algorithms narrows, as shown in Fig. 6a. Moreover, 

the baseline is more sensitive to the increased diversity of 

processing rates and transmission rates as indicated in Fig. 6b. 

Therefore, we can conclude that the greedy algorithm that 

considers both processing delay and communication delay is 

r3 0 0 1/2 1/2 

 
In the simulations, the transmission rate between mobile 

device and video-cloud is initially set to a randomly selected 

rate fromRand it dynamically changes according to the 

transition matrix each time unitt. The greedy algorithm 

determines video offloading and transmission sequence based 

on the initially assigned transmission rates before processing 

videos. Then, the simulation runs and produces the runtime 

Tmax for the greedy algorithm. The adaptive algorithm runs 

during video processing and determines video offloading dur- 

ing runtime of simulations. 

First, we compare the adaptive algorithm with the greedy 

algorithm under static transmission rates. As shown in  Fig. 

7a, the greedy algorithm outperforms the adaptive algorithm  

in various vectors of transmission rates. Moreover, the dif- 

ference between the greedy algorithm and adaptive algorithm 

expands with the increased diversity  of  transmission  rates.  

In the adaptive algorithm, video-clouds can only accept the 

offload request after receiving previously offloaded video to 

adapt to the variation of transmission rate. Therefore, when a 

mobile device selects a video-cloud for offloading, the video- 

clouds that are currently receiving videos are not considered. 

However, the greedy algorithm makes offloading decisions 

beforehand and considers every video-cloud at each step. 

Therefore, the greedy algorithm performs better under static 

transmission rates. 

When transmission rates change dynamically, the perfor- 

mance of the greedy algorithm and the  adaptive algorithm 

is shown in Fig. 7b, where the time unitt= 5s. When 

transmission rates are more stable,e.g.,R= [16]or[12,16], 

greedy 
adaptive 

greedy 
adaptive 

greedy 
adaptive 

T
m

a
x
 (
s
)  

T
m

a
x
 (
s
)  

T
m

a
x
 (
s
)  



www.ijcrt.org                                             © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 409 
 

 

80 

 

 
60 

 

 
40 

 

 
20 

 

 
0 
#1 #2 #3 #4 
mobile devices 

 

(a) testbed (b) sizes and distribu- 
tion of videos 

50 

 

40 

 

30 

 

20 

 

10 

 
0 
8 12 

WiFi data rate (MB/s) 

 

(c) completion time of dif- 
ferent algorithms 

video-clouds. However, the processing scheduling problem is 

a strongly NP-hard problem. To  deal with this, we designed   

a greedy algorithm and proved the approximation ratio. To 

handle the dynamics of the transmission rate between mobile 

devices and video-clouds, we further proposed an adaptive 

algorithm. Extensive simulations and experiments on a small 

testbed show that, as expected, the performance of the greedy 

algorithm is close to the optimum and much better than other 

approaches, and the adaptive algorithm performs better when 

Fig. 8: Performance of different algorithms on a small testbed. 

the greedy algorithm performs better than the adaptive al- 

gorithm. When transmission rates are more dynamic,e.g., 

R= [8,12,16],[4,8,12,16]or[2,4,8,12,16], the adaptive 

algorithm outperforms the greedy algorithm. Fig. 7c gives the 

performance comparison in terms of time unit of the Markov 

chain. As short time intervals produce a dynamic transmission 

rate during video processing, the adaptive algorithm performs 

better when time interval is short, and vice versa. 

In summary, as expected, the greedy algorithm is preferred 

for the scenarios where the transmission rate is steady, while 

the adaptive algorithm is more suitable for the scenarios where 

the transmission rate is dynamic. 

E. System Performance 

We implemented an on-demand video processing  system 

on a small testbed that includes four Nexus 9 tablets and the 

video-cloud implementation which are connected through a 

WiFi router, as shown in Fig. 8a. Both the tablets and video- 

cloud are running a same deep learning model using Caffe   

for object detection on videos. The video-cloud can issue 

queries with a targeted object to tablets. For video processing, 

frames are extracted from a videos and then object detection 

are performed on the frames. 

The performance is measured under two different  WiFi 

data rates (i.e., 8MB/s and 12MB/s). Since the data rate is 

stable in our test environment, oursystemperforms the greedy 

algorithm rather than the adaptive algorithm to achieve the best 

performance. We compare it tolocal(videos are processed 

locally),cloud(all videos are offloaded to the video-cloud 
for processing) andbaseline. Experiments are performed on 

the transmission rate is more dynamic. 
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