
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 400

On-demand Video Processing in Wireless Networks

Dr. B.Raghu , Principal & Professor/CSE, SVS GROUPS OF INSTITUTION.

 Dr. T.Amitha ,Professor /CSE Dept, SVS GROUPS OF INSTITUTION, Waraganal, Telangana

Abstract—The vast adoption of mobile devices with cameras
has greatly assisted in the proliferation of the creation and distri-
bution of videos. For a variety of purposes, valuable information
may be extracted from these videos. While the computational
capability of mobile devices has greatly improved recently, video
processing is still a demanding task for mobile devices. Given
a network consisting of mobile devices and video-clouds, mobile
devices may be able to upload videos to video-clouds, which
are more computationally capable for these processing tasks.
However, due to networking constraints, when a video processing
task is initiated through a query, most videos will not likely
have been uploaded to the video-clouds, especially when the
query is about a recent event. We investigate the problem of
minimal query response time for processing videos stored across
a network; however, this problem is a strongly NP-hard problem.
To deal with this, wefirst propose a greedy algorithm with
bounded performance. To further deal with the dynamics of the
transmission rate between mobile devices and video-clouds, we
propose an adaptive algorithm. To evaluate these algorithms, we
built an on-demand video processing system. Based on the mea-
surements of the system, we perform simulations to extensively
evaluate the proposed algorithms. We also perform experiments
on a small testbed to examine the realized system performance.
Results show the performance of the greedy algorithm is close
to the optimal and much better than other approaches, and
the adaptive algorithm performs better with more dynamic
transmission rates.

I. INTRODUCTION

The proliferation of handheld mobile devices and wireless

networks has facilitated the generation and rapid dissemination

of vast numbers of videos. Videos taken for various purposes

may contain valuable information about past events that can be

exploited for on-demand information retrieval. For example, a

distributed video processing problem may involve a query of

a set of mobile devices tofind a specific vehicle in a region

of a city. Various stored videos within mobile devices, not

necessarily for the intention of capturing the object of interest,

may provide valuable information for such queries. However,

the processing requirements for such applications approach

the computational limits of the mobile devices. Although the

computational capacity of mobile devices has greatly improved

in the past few years, processing (multiple) videos is still

overwhelming for mobile devices.

In this paper, we consider wireless networks consisting

of mobile devices and video-clouds. Instead of storing and

processing videos locally, mobile devices can choose to upload

videos to more capable devices (e.g., computers with a much

powerful GPU), which can significantly accelerate video pro-

cessing. We call these devices video-clouds. However, due to

This work was supported in part by Network Science CTA under grant
W911NF-09-2-0053.

the availability gap (the time between when the video is taken

and when it is uploaded) [1] and when a query is issued, video-

clouds will not likely have the pertinent video pre-stored,

especially when the query is about recent events. Therefore,

to reduce the delay of the on-demand information retrieval

from videos related to a query, the related videos can be

processed either locally on the mobile devices or transmitted

and processed on the video-clouds.

Based on this use of wireless networks for video processing,

there are clear scenarios to which this can be applied. Ex-

ample scenarios are emergency response and video forensics,

in which authorities attempt to identify objects or people

of interest in videos captured by surveillance systems or

other mobile devices. These devices may have been either

present or deployed in the time and area of interest. In

these situations, video-clouds can be deployed in this area

to support the storage and processing of videos to address on-

demand information queries about past events. Without video-

clouds, this process is significantly delayed, resulting in

serious consequences in the event that the query is not

addressed satisfactorily.

As an example, an information query may be the following

“did a red truck drive through downtown today?” Then,

all related videos stored on either mobile devices or video-

clouds taken in proximity of the “downtown” area need to

be processed to detect the presence of a “red truck”. The

query will reach all devices in the network andfinds all of the

related videos based on video metadata (e.g., GPS, timestamp).

The network needs to determine where to process each video

(locally or offloaded to video-clouds), and to which video-

cloud to upload each video. This approach should minimize

the time required to process all of the related videos, which

is referred to as thequery response time.
Unfortunately, the problem of processing pertinent videos

distributed throughout a network with minimal query response

time, which is referred to as theprocessing schedulingprob-

lem, turns out to be a strongly NP-hard problem. To deal with

this, we design a greedy algorithm with bounded performance,

which determines whether or not to offload each video, and

schedules a transmission sequence to offload videos from a

set of mobile devices before processing the videos. To cope

with the dynamics of the transmission rate between mobile

devices and video-clouds during this process, we further

propose an adaptive algorithm, which makes such decisions

in runtime. We have built an on-demand video processing

system. Based on the measurements of the system, we perform

simulations to extensively evaluate the proposed algorithms.

We also perform experiments on a small testbed to examine

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 401

the system performance. The major contributions of this paper

are summarized as follows.

• We formulate the processing scheduling problem for on-

demand video processing to determine the optimal video

offloading and transmission sequence in terms of

minimizing the query response time.

• We design a greedy algorithm with bounded performance,

which exploits average completion time of nodes as a cri-

terion to consecutively determine each video offloading.

The performance of the greedy algorithm is close to the

optimal and much better than other approaches.

• We propose an adaptive algorithm with very low message

overhead to collect information from nodes and then

determine video offloading during runtime. The adaptive

algorithm performs better when the transmission rate be-

tween mobile devices and video-clouds is more dynamic.

• We build an on-demand video processing system for a

network of mobile devices and a video-cloud. Experi-

mental results verify the performance of the designed

algorithms on the testbed.

The rest of this paper is organized as follows. Section II

reviews related work. Section III gives the overview. The

greedy algorithm is presented in Section IV, followed by the

adaptive algorithm in Section V. Section VI evaluates the

performance. Section VII concludes the paper.

II. RELATED WORK

The proliferation of mobile devices with cameras, such

as smartphones and tablets, has substantially increased the

prevalance of images and videos. Images and videos taken

by mobile devices create opportunities for many applications

and have attracted considerable attention from research com-

munities. Much of the research focuses on images. Yanet

al.[2] studied real-time image search on smartphones. Qin

et al.[3] investigated tagging images, integrating information

of people, activity and context in a picture. Wanget al.[4]

optimized the selection of crowdsourced photos based on the

metadata of images including GPS location, phone orientation,

etc. Huaet al.[5] designed a real-time image sharing system

for disaster environments. Likamwaet al.[6] investigated the

energy optimization of image sensing on smartphones.

Some work focuses on videos. Raet al.[7] designed a sys-

tem for real-time video processing with computation offload.

Simoenset al.[8] designed a system for continuous collection

of crowdsourced videos from mobiles devices using cloudlets.

Jainet al.[9] proposed video-analytics for clustering crowd-

sourced videos by line-of-sight. Chenet al.[10] designed a

response system for uploading crowdsourced videos. However,

none of these works consider on-demand information retrieval

from videos of networked mobile devices.

Mobile cloud computing bridges the gap between the limita-

tions of mobile devices and increasing mobile multimedia ap-

plications. Mobile devices can potentially perform offloading

of computational workloads to either improve resource usage

or augment performance. MAUI [11] and ThinkAir [12] are

the system frameworks to support method-level computation

offloading by code migration. Dynamic execution patterns and

context migration is investigated for code offloading in [13].

Virtual Machine synthesis is exploited for offloading in [14],

[15]. A few works focus on the latency of mobile offloading.

Wanget al.[16] considered reducing task completion by adap-

tive local restart. Kaoet al.[17] optimized the latency with

energy constraints by task assignment of mobile offloading.

Unlike existing work that focuses on workload offloading from

individual mobile devices, the major focus of this paper is

to optimize the latency of video processing across multiple

mobile devices and video-clouds through video offloading.

III. OVERVIEW

A. The Big Picture

We consider a wireless network that consists of mobile

devices and video-clouds, where mobile devices can directly

communicate with video-clouds via wireless links. When an

information retrieval query is initiated, videos on the nodes

related to the query need to be processed to answer the query.

Note that when we say node or network node, it refers to

either a mobile device or a video-cloud. In such networks,

queries can be easily disseminated in the network and then

parsed at each node tofind the related videos,e.g., based on

metadata of videos, such as GPS location and timestamp. The

dissemination and parsing of the queries is important to this

process but is not the focus of this paper.

Since mobile devices have limited computational capabil-

ity, processing videos on mobile nodes may result in long

processing times, especially when there are many videos to

be processed. Therefore, besides processing videos locally,

mobile devices can also offload videos to video-clouds and

process videos remotely. However, the offload process incurs

other delays,e.g., the processing delay at the video-cloud and

communication delay. Moreover, we consider deep learning for

video processing. Although deep learning (e.g.convolutional

neural networks) can be greatly accelerated by GPU using

parallel computing, processing even a single video will fully

occupy a GPU and thus videos have to be processed sequen-

tially. Therefore, when a video-cloud is busy processing a

video, it has to put other videos into a queue. Moreover, we do

not consider mobile to mobile offloading since mobile devices

have similar computational capacity and such offloading rarely

benefits when considering these delays together.

Moreover, due to the constraints of video processing tech-

niques (e.g., the feature extraction for action recognition

requires all frames be available beforehand [18]), nodes can

process videos only when the video has been fully received
1. Considering this together with the limitation of wireless

link capacity, when more than one mobile device needs to

offload videos to the same video-cloud, it is desirable to

transmit the videos sequentially rather than in parallel such

1Very large videos can be easily segmented into smaller videos by pre-
processing based on the change of scene or context for storing and transmis-
sion. We assume that the videos of mobile devices have already been pre-
processed. More sophisticated optimization incorporating with pre-processing
is to be considered in future work.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 402

Tk =c b,k +p b,k +p c,k

pa,k pb,k pc,k

videoc videob videoa

0 ca,k cb,k cc,k Tk

Fig. 1: An example of calculating the completion time of video-clouds

that the video-cloud can process videos early. Similarly, each

mobile device should offload videos sequentially as well. For

example, assuming a node needs to transmit two videos with

the same size to another node and transmitting one video

costs timet, if the two videos are transmitted one by one,

the receiver can start processing thefirst video attand the

second video at2t. However, if the two videos are sent out

simultaneously, the receiver can only start processing at time

2t. In addition, it is possible that different video-clouds are

receiving videos from different mobile devices simultaneously.

This can be accomplished by assigning different wireless

channels at video-clouds so as to avoid potential interference.

These constraints on video processing and communications

extremely complex the problem of processing videos through-

out a wireless network, specifically, when we aim to take

advantage of video-clouds to optimize the query response time.

B. Problem Definition

To minimize the query response time, which is the time

required to process all the videos related to the query, we need

jointly consider several factors: which nodes should process

which videos, and what transmission sequence to perform the

video offloading, as each node can only transmit (or receive)

one video at a time. Theprocessing schedulingproblem is to

find such a video offloading and transmission sequence that

minimizes the query response time. The processing scheduling

problem is NP-hard, which can be proved by reduction toma-

chine scheduling[19]. Considering the special case where the

communication delay of videos is zero, processing scheduling

can be seen as a generalization of machine scheduling with

the constraint that certain jobs can be only scheduled on some

machines (i.e., videos stored at a mobile device can only be

For mobile devices, the assigned videos are the locally stored

videos excluding offloaded videos.LetT k,k∈ Udenote the

completion time of nodekand thenT max = maxk∈ U Tk. The

processing scheduling problem is to minimizeT max.

C. Completion Time

First, we investigate how to calculate the completion time

of nodes with the assignment of videos. Each videoiassigned

at nodek, has processing delayp i,k and communication delay

ci,k. Note thatp i,k may vary across different types of queries

that require different video processing solutions; andc i,k is

the time from the initiation of the query to when nodekfully

receives videoi. Notec i,k = 0represents videoiis locally

stored at nodek.

Since videos may be scheduled to be processed by video-

clouds instead of locally by mobile devices, we need to

account for the communication delay incurred by the offload.

As a result, the completion time of video-clouds is not simply

equal to the sum of processing delay of assigned videos.

Further, a video-cloud, sayk, may also spend time waiting for

assigned videos. Therefore, for each video assigned tok, we

check if the video offload tokis completed beforekfinishes

processing existing videos or previously received videos. If

the offload is complete, the video-cloud does not incur any

waiting time, otherwise, the waiting time ofkfor the video

needs to be included inT k. Therefore,T k is calculated as the

sum of the processing delay of videos assigned at nodekand

the waiting time for each video to be offloaded.

Fig. 1 is an example of calculating the completion time of

video-cloudkinvolving the offloading of videos with various

cases of processing and communication delays. In this ex-

ample, with knowledge of the processing and communication

delay of each video shown in thefigure, the completion time

forkcan be calculated byT k =c b,k +p b,k +p c,k, which can

be interpreted that if nodekspends time waiting for a video,

then the time before processing the video can be denoted by

the communication delay of the video. Thus, the calculation

of the completion time of nod
�
es can be generalized as

Tk = max(ci,k + αi,j,kpj,k),(1)

processed at this mobile device or remotely at video-clouds). where i∈ Vk
j∈ Vk

Thus, processing scheduling is NP-hard in the strong sense.

We do note that there is past work on machine scheduling,

considering different constraints. However, to the best of our

knowledge, they do not consider the cost of scheduling a job

(i.e., the communication delay of an offloaded video) as a part

of the completion time at the scheduled machine. We will

show the performance of the scheme that does not consider

the communication delay in Section VI.

LetVrepresent the set of videos stored in the network

and related to the query, and letUdenote the set of nodes

in the network.U c denotes the set of video-clouds andU d

V k denotes the set of videos assigned to nodek, and

αi,j,k = 1, ifc j,k c ≥i,k, otherwise0. Note that (1) can also be
used to calculate the completion time of mobile devices.

Since�, for mobile devicek,c i,k = 0andα i,j,k = 1in (1), Tk

= i∈ Vk
pi,k.

D. Mathematical Formulation

Supposexis a solution from the solution space for pro-

cessing scheduling, wherexdetermines which videos each

mobile device should offload, to which video-clouds these

videos should be sent, and the transmission sequence of all
the offloaded videos. The problem�then can be formulated as

denotes the set of mobile devices, whereU=U c∪ U d. The min max max (ci,k(x) + αi,j,kpj,k)

query response timeT max is the maximum time to complete
processing of the assigned videos among all of the nodes.For

video-clouds, the assigned videos are the videos stored locally

and the videos scheduled to be offloaded from mobile devices.

k∈ U i∈ Vk(x)
j∈ Vk(x) (2)

.α i,j,k = 1,ifc j,k(x)≥c i,k(x),otherwise0,

∀ k∈ U,∀ i, j∈ V k(x),

vi
d

eo
-c

lo
u

d
k

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 403

m

n

u

v

Tm Tn T Tu Tv

m

n

u

v

Tm Tn T Tv Tu

m

n

u

v

Tm Tn TTuTv

(a) offloading videoa (b) offloading videob (c) offloading videoc

Fig. 2: Illustration of the greedy algorithm, wheremandnare video-clouds, anduandvare mobile devices.

whereV k(x)denotes the set of videos to be processed at node

kof solutionx,c i,k(x)denotes the communication delay of

videoiunder solutionxandc i,k(x)is subject to the constraint

that each node can only send or receive one video at any time.

The processing delay of each video can be easily obtained

based on the size of video, the node profile, and the execu-

tion profile of the processing method, as in [11] and [14].

Therefore, for a specific node and processing method, the

processing delay is proportional to the size of the videos

time. When the completion time among the nodes has less

variability, it is better to offload videos with small size. Based

on these intuitions, we design the greedy algorithm, which

offloads a video from the mobile device with the maximum

completion time to a video-cloud each step and improves

Tmax step by step. The algorithm works as follows.

1. Calculate the completion time for each node according

to (1), and then calculate the average completion time

of nodes, denoted as
(discussed in Section VI). However, the communication delay
not only depends on the size of videos and the transmission

�

T= �i∈ U Tisi

,(3)

rate, but also the transmission sequence of the mobile devices where s
i∈ U

si

i denotes the processing rate of nodei. Note

and the receiving sequence for each of the video-clouds. For

example, according to solutionx, mobile devicekneeds to

first offload videoato a video-cloud and then transmit video

bto another video-cloudm. To calculate the communication

delay ofc b,m(x), we need to determine when nodekcan

start to transmit videobtom, which is actually the time

when nodekfinishes offloading videoaor the time when the

video scheduled beforebin the receiving sequence atmis

received. Therefore, we see the calculation of communication

delay is nonlinear and thus (2) cannot be further formulated

by integer linear programming, which can be solved by the

CPLEX optimizer. To deal with this, we propose a greedy

algorithm with bounded performance to solve the processing

scheduling problem.

IV. GREEDY ALGORITHM

In this section, we describe the design of the greedy

algorithm, give the performance analysis and discuss how the

greedy algorithm can be easily and efficiently implemented.

A. The Algorithm

The processing scheduling problem addresses how to of-

fload videos from mobile devices to video-clouds to minimize

the maximum completion time for the entire process, which

equivalently can be seen as averaging the completion time of

all the nodes.

Intuitively, it is desirable for video-clouds not to be idle

since they are able to process the videos faster than the mobile

devices. Even more preferable is that they are processing and

receiving videos simultaneously. We consider two situations

in which this may occur. Initially, the video-cloud may have

locally stored videos to process; therefore, it is desirable to

have the mobile devices upload larger videosfirst. This is

also true when the disparity of the completion time among

the nodes is the greatest. After several offloading steps, there

may be some convergence in terms of the average completion

that the completion time of video-clouds may include

idle time for waiting for an incoming video.

2. For the mobile device that has maximum completion

time, sayi,find the videos that have sizes less than or

equal to(T max T−)s i. Note thatT max =T i.
3. Then, this video set is iterated from large to small to

find thefirst pairing of video and video-cloud such that,

if the video is offloaded to the video-cloud, it has the

minimal increase in completion time among all video-

clouds and its completion time is still less than or equal

toT.

4. If there is no valid pair, select the smallest video on

mobile deviceiand offload it to the video-cloud, say

m. Video-cloudmis chosen such that the completion

time ofmis minimal among all video-clouds andT m <
Tmax after the offloading of the video.

5. IfT m T≥ max (i.e.,T max cannot be reduced by

offloading videos from mobile devices to video-clouds),

the process stops; otherwise iterate the process from step

one.

Let us use Fig. 2 as an example to illustrate the algorithm.

There are four nodes in the network, wheremandnare video-

clouds anduandvare mobile devices. First, each node

calculates its own completion time. In Fig. 2a, since no videos

have been offloaded, the completion time is simply the sum of

the processing�delay of videos. Then, we calculateTaccording

to (3). In (3), i�∈ U Tisi can be seen as the sum of workload at

each node and i∈ U si is the processing power of all nodes.
Thus,Tis the weighted average completion time, assuming
that the future offloading of videos does not incur any idle

time on any video-clouds and videos can be fragmented to any

sizes. Therefore,Tcan be seen as a criterion to determine

video offloading at each step, which avoids overloading the

video-cloud.
As aforementioned, videos that are offloaded from mobile

devicevshould be smaller than(T v −T)s v. In Fig. 2a, these

ΔTm
Tmax =T v

ΔTn

b

c a

ΔTm

Tmax =T u

ΔTn

a

b

c
T< T n +ΔT n

T> T m +ΔT m

idletime Tmax =T v

a

T< T n +ΔT n

c

b

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 404

videos areaandc. For video offloading, wefirst consider Lettbe the last time when all video-clouds are busy (idle

the increase of the completion time of video-clouds (i.e., the

joint consideration of the workload at the video-cloud and the
time does count as busy),x= �i∈ V Di

j∈ U sj

and letydenote the

communication delay of the video). Moreover, we consider

the completion time itself. If it is longer thanTafter the

assignment of the video, we should choose a smaller video.

In Fig. 2a, sinceD a > Dc, whereDdenotes the size of

the video, videoais considered for offloadingfirst. Although

processing delay of the video with the largest size at the video-
cloud, which is scheduled to process the last offloaded video

(assuming thatT max is determined by a video-cloud). Since

Tis explored as a criterion to determine video offloading,

together with (1), we have
� xsi

video-cloudnhas more workload thanm, the offloading of t≤x+
i∈ Uc

, (4)
ri

videoaresults in less increase in the completion time forn
than form(i.e.,ΔT n <ΔT m andT n +ΔT n <T), so video

where, to simplify the analysis, we assume that videos of- floaded at a video-cloudiare transmitted at a constant rater i
�

ais offloaded to video-cloudn. from mobile devices. In (4), i∈ Uc
 xsi gives the worse case
ri

After that, we recalculateT. Since the offloading of video
adoes not incur any idle time at video-cloudn,Tis the same
as before. As in Fig. 2b, currently,T max =T u and thus the

of communication delay. Moreover, the last video offloading

of the greedy algorithm minimizes the completion time at the
assigned video-cloud am

�
ong all vid

�
eo-clouds. Therefore,

video offloading will be from mobile deviceu. Althoughnhas Tmax ≤x+ xsi
+y+

ysj

.(5)

more workload thanm(which meansnmay not have to be idle
ri

i∈ Uc

rj
j∈ Uc

in waiting forb), the offloading of videobtonincurs more

communication delay thanm;i.e.,c b,n =c a,n +D b/ru,n,

LetT ∗ denote the optimal maximum completion time and

clearly we have

wherer u,n denotes the transmission rate betweenuandn, x≤T ∗

whilec b,m =D b /ru,m , assumingr u,m =r u,n . SinceT< y≤T ∗ .

Tn +ΔT n andT> T m +ΔT m, videobwill be offloaded to Together with (5), we have
video-cloudm. T

�
2T ∗ (1 +

 si
).(6)

Due to the idle time ofmincurred by the offloading of
max ≤ r

i∈ Uc

videob,Tincreases as shown in Fig. 2c. To determine the

assignment of videos, the processing delay at video-clouds

can be easily calculated, but the communication delay is more

complicated to compute as discussed before. For example, in

Fig. 2c,c c,m = max ca,n,{cb,m +D c/r} v,m. So, video

cis assigned atmrather thannsinceT n +ΔT n >T. The

algorithm terminates with this offloading as the remaining two
videos on mobile devices are large and the offloading of these
videos can no longer reduceT max.

The processing scheduling problem can be seen as balancing

the completion time at each node. Thus,Tis employed as a

criterion for video offloading at each iteration, sinceTcan

be treated as the optimal average completion time. Moreover,

at each step, we consider the increase of the completion time

at video-clouds, which is a joint consideration of the incurred

communication delay and idle time at video-clouds. There-

fore, by regulating video offloading byTand minimizing

the increase of completion time at video-clouds, the greedy

algorithm can reduceT max step-by-step towards the optimal.

B. Performance Analysis

For each offloading step, the greedy algorithm attempts to

minimally increase the completion time for the video-cloud.

However, when the completion time with the minimal increase

is more thanT, the greedy algorithm chooses to balance

the completion time among video-clouds to avoid overload.

Moreover, due to the heterogeneity of processing rates and

transmission rates, it is hard to give a tight bound on the

performance of the greedy algorithm. However, we try to

give some insights on the algorithm performance with the

variability of these rates.

From (6), when the processing rate of video-clouds is high,

the communication delay has a great impact on the completion

time of video-clouds. Thus, the approximation ratio goes up.

When the transmission rate is high, the processing delay

dominates the completion time and then the approximation

ratio approaches 2. Although the bound on the performance

is not tight, as shown in Section VI, the greedy algorithm

performs much better than this bound.

For the computational complexity, as one video is offloaded

during each iteration, there are at most V| i|terations for the

greedy algorithm. For each iteration, the videos stored at the

mobile device with the maximum completion time are iterated

over video-clouds to minimize the increase in completion

time. Therefore, the computational complexity of the greedy

algorithm isO(|U||V| 2).

C. Discussion

The greedy algorithm is a centralized approach and requires

the information of all the videosa priori. When a query is

initiated, the information (e.g., data size) about videos stored

in the network and related to the query needs to be collected

at one node,e.g.a video-cloud, to run the greedy algorithm.

The solution is then sent to the other nodes. Alternatively, the

information can be collected at each node and each node may

run the greedy algorithm. This is feasible, since the informa-

tion collected is small and the computational complexity of

the algorithm is low.

The solution of the processing scheduling problem deter-

mines which videos are offloaded between mobiles and video-

clouds. It also determines the transmission sequence, but this

sequence is shown not to be trivial. For example, in Fig. 2,

for mobile devicev, the sending sequence isaand thenc.

i

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 405

However,vmay not transmitcimmediately aftera; it must be

transmitted aftermreceives videobfromu. Therefore, when

there is a video for which the mobile device cannot locally

determine the transmission start time, the receiving video-

cloud will inform the mobile device when it is ready to receive.

Although such coordination incurs additional communication

overhead (and idle time), the overhead is low since there is at

most one message for each offloaded video.

The greedy algorithm is designed for the scenario where

mobile devices and video-clouds are stationary (e.g., surveil-

lance systems) and the transmission rate between them is

steady (or varies slightly). To cope with the scenario with high

dynamics of transmission rate, we further propose an adaptive

algorithm.

V. ADAPTIVE ALGORITHM

In this section, we consider the case where the transmission

rate between mobile devices and video-clouds dynamically

changes during the on-demand querying of videos process

(but assume that all nodes stay connected to the network

during the process). Due to the dynamics of the transmission

rate, the communication delay of offloaded videos also varies.

This makes the processing scheduling problem more difficult,

because we do not know how the transmission rate changesa

priori. Since the communication delay of an offloaded video is

only known after the transmission of the video is completed,

it is better to determine video offloading in realtime in such

scenarios. Therefore, we propose an adaptive algorithm that

makes video offloading decisions during runtime, through

consideration of the transmission rate, the communication

delay and the completion time.

A. The Algorithm

We assume the same query is issued to the network of

mobile devices and video-clouds. Unlike the greedy algorithm

which determines video offloading before processing any

videos, the adaptive algorithm offloads videos from mobile

devices to video-clouds in realtime.

Intuitively, to offload videos in runtime, the designed al-

gorithm should gradually reallocate videos from mobile de-

vices, balance the workload among video-clouds, and prevent

video-clouds from being overloaded. Moreover, the adaptive

algorithm should not incur too much communication overhead,

which would delay the video transmission. Based on these con-

siderations, the adaptive algorithm is designed to adapt to the

dynamics of transmission rate and reduceT max dynamically

as videos arrive and others are being processed.

To describe the adaptive algorithm, wefirst give the overall

workflow and then detail how the video-cloud decides whether

to accept offload requests from mobile devices and how the

mobile device decides to which video-cloud to offload the

video based on replies from video-clouds.

Upon receiving the query, each node identifies locally stored

videos related to the query. Then, it broadcasts the information

about these videos to other nodes and starts to process videos.

For processing, each mobile device continuously processes

videos from small to large in size. Each video-cloud can

process any video it currently has in any order as the order

will not impact the completion time on the video-cloud.

For video offloading, each time a mobile device offloads the

largest video, for which it has not completed processing (i.e.,

it is possible to offload the video that is being processed).

When a mobile device is ready to offload videos (i.e., it

is not transmitting any video), it will broadcast an offload

request to inform all the video-clouds. When video-clouds

receive an offload request, they will add the request into a

set of unhandled requests. If the mobile device justfinished

offloading another video before sending out the request, video-

clouds will acknowledge the actual communication delay of

the previously offloaded video and update the information of

the video-cloud that received that video.

When a video-cloud is ready to receive videos, (i.e., it is

not receiving any video), it will determine whether to accept

the requests it has received and reply the accepted request.

Based on the replies from video-clouds, the mobile device

will eventually determine to which video-cloud the video

should be offloaded. After making the decision, the mobile

device will broadcast a confirmation message to video-clouds

to inform them of the selected video-cloud and the estimated

communication delay of the video, and then start transmitting

the video. When other video-clouds receive the message, they

will mark the offload request from the mobile device as

handled and then update the locally stored information of the

mobile device and the chosen video-cloud,i.e., change the

location of the video from the mobile device to the video-cloud

and add the estimated communication delay for the video.

This process continues until all videos are processed.
A video-cloud needs to decide whether to accept received

requests when it is ready to receive videos, and a mobile

device needs to decide to which video-cloud to offload the

video based on the replies from video-clouds. The algorithm

works as follows.

1. A video-cloud, saym, which is not currently receiving

a video, calculates the completion time of each node

based on the collected information at that time,

and then calculatesTaccording to (3).

2. From the set of unhandled requests, it selects the request

from the mobile device,u, that has the maximum com-

pletion time among the set. Then, using the current trans-

mission rate between the mobile device and itself, which

can be estimated based on signal strength, signal-to-noise

ratio, etc., video-cloudmcalculates the completion time

Tm and the increaseΔT m if the video is offloaded tom.
3. IfT u =T max, video-cloudmwill accept the offload

request whenT m <T max and then sendT m andΔT m to
u. IfT u <T max, video-cloudmwill accept the request

ofuonly ifT m T,≤otherwise,mwill skip the request.
4. Mobile deviceumay receive multiple replies at the same

time. It will choose the video-cloud that has the minimal

completion time if the received completion times are

more thanT. Otherwise, it will select the video-cloud

whose completion time is less thanTsuch that the

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 406

timet 1

m a

n
u
v

offload request

processed

processing

unprocessed

receiving

t1 T t1 TnT t1 TnT

(a)usends out an offload request (b)nrepliesuwithT n andΔT n (c)uconfirmsbwill be sent ton

Fig. 3: Illustration of the adaptive algorithm, wheremandnare video-clouds, anduandvare mobile devices.

increase in the completion time of the chosen video-cloud

is minimal.

5. After mobile deviceuselects the video-cloud, it will

broadcast a confirmation message. When video-clouds

receive the message, they will update locally stored

information accordingly as discussed above. The unse-

lected video-clouds that are ready to receive videos will

continuously process the unhandled requests if the request

set is not empty.

See Fig. 3 as a simple example to illustrate the adaptive

algorithm. As in Fig. 3a, at timet 1, mobile deviceuis ready to

offload videos and thus it sends out an offload request of video

bto video-cloudsmandn. Sincemis currently receiving

videoa, it will add the request into the set of unhandled

requests. Sincenis not currently receiving a video, it will

calculateT n andΔT n if videobis offloaded to itself based on

the current transmission rate betweennandu, and then send

them touas shown in Fig 3b. Whenureceives the reply, it will

decide to offloadbton, because it only gets one reply. Before

offloadingbton, it willfirst send out a confirmation message

as in Fig. 3c. Whennreceives the confirmation message, it

will setup the connection to receiveb. Meanwhile whenm
receives the message, it will mark the offload request fromu
as handled.

B. Discussion

Since, typically, there are more mobile devices than video-

clouds in the network, a video-cloud is most likely to decide

whether to accept a request when itfinishes receiving a

video rather than when it receives an offload request. As the

video-cloud selects the request of the mobile device that has

the maximum completion time among the set of unhandled

request, the adaptive algorithm will gradually decreaseT max

by handling each offload request until it cannot be reduced.

The confirmation message from a mobile device is designed
to inform video-clouds that the offload request has been

between the actual completion time at each video-cloud and

the estimated will only vary by the actual communication

delay of one video. Thus, it only slightly impacts the criterion

Tand the performance of the adaptive algorithm.

As message overhead can delay video offloading, the adap-

tive algorithm is designed to produce messages with as little

overhead as necessary. At the beginning of video processing,

each node will broadcast a message including the information

of locally stored videos and thus there will be U| m| essages.

As discussed before, the video-cloud will most likely handle

the request after receiving a video, and thus there is most

likely one reply for each request. Therefore, for each offloaded

video, there will be three messages,i.e., request, reply and

confirmation. In the worse case that all videos are offloaded

to video-clouds, the overall message overhead of the adaptive

algorithm is3 |V| |+| U . The small number of messages is

sufficient to obtain all the information to determine video

offloading. Moreover, a node needs to compute the completion

time of all nodes when it (for video-clouds) decides to accept

the offload request or when it (for mobile devices) selects the

video-cloud. However, the computation overhead is low, i.e.
|V|. For the worst case that all videos are offloaded to video-

clouds, the sum of computation overhead of all nodes is2|V| 2.

As video-clouds can also communicate with each other,

we could consider transfer of videos among video-clouds

to balance the workload. However, we decided against this

because video offloading among video-clouds incurs additional

communication delay. That means a video might be transferred

multiple times before being processed and thus increase the

communication delay. As a result, it might also increase the

communication delay of other videos due to the constraint

that each node can only send or receive one video at a time.

However, the adaptive algorithm requires only one transfer

for each offloaded video, and instead of balancing workload

by transferring videos among video-clouds, it balances the

handled and the estimated communication delay of the video

to be offloaded, which will be used to calculateTat each

video-cloud when it handles other offload requests. The com-

munication delay is estimated based on the transmission rate at

the beginning of offloading each video. Since the transmission

rate may vary during offloading, the actual communication

delay will be different than what is estimated. However, each
video-cloud will be notified of the completion of each video

60

40

20

0
0 20 40 60 80 100 120

video size (MB)

(a) processing delay vs video size

60

40

20

0
0 20 40 60 80 100 120

video size (MB)

(b) completion time vs video size

offload (by the offloading mobile device) and then the other

video-clouds can update their previously received estimation

by the actual communication delay. Therefore, the difference

Fig. 4: Processing delay and completion time of videos with different sizes for
mobile device and video-cloud, where videos have the resolution 192×0 1080,
bit rate 16Mbps, frame rate 30fps, and the transmission rate between mobile
device and video-cloud is 16MBps.

mobile device
video-cloud

mobile device
video-cloud

m
n
u
v

timet 1

a

ΔTn

processed

processing

unprocessed

receiving

conftrmation message

b

timet 1

m
n
u
v

a

ΔTn

processed

processing

unprocessed

receiving

replyT n andΔTn

b b

p
ro

ce
ss

in
g

 d
el

a
y

 (s
)

co
m

p
le

ti
o

n
 ti

m
e

 (s
)

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 407

1.3

800 1.3

400 1.3

400 1.3

400

1.2

1.1

1.0 0

200 300 400 500 600 700 800

of videos

(a) effect of|V|
1.3

400

400

1.2

1.1

1.3

of mobile devices

(b) effect of|U d|

200

300

1.2

1.1

1.0

1.3

of video-clouds

(c) effect of|U c|

200

300

1.2

1.1

1.3

video size (MB)

(d) effect ofµ

200

300

1.2

1.1

1.0

4 8 12 16 20 24 28

transmission rate (MB/s)

(e) effect ofr

200

1.2

1.1

40 60 80 100 120 140 160

processing rate (MB/s)

(f) effect ofs c

200

1.2

1.1

1.0

2 3 4 5 6 7 8

processing rate (MB/s)

(g) effect ofs d

200

100

1.2

1.1

1.0 0

100 90 80 70 60 50 40

. (%)

(h) effect ofγ

200

100

Fig. 5: Comparison between greedy algorithm and optimal solution in terms ofT max/T
∗
 and the value ofT max, where the default setting is|V|= 300,

|Ud|= 20,|U c|= 3,µ=50MB,σ= 20MB,r=12MB/s,s d = 2MB/s,s c = 100MB/s andγ= 0.6.

workload when offloading videos from mobile devices to

video-clouds.

The adaptive algorithm estimates the communication delay

of each offloaded video based on the transmission rate just

before offloading and makes video offloading decision in

realtime. Therefore, it is more suitable for the scenarios where

the transmission rate is dynamic during video processing.

VI. PERFORMANCE EVALUATION

In this section, wefirst evaluate the proposed algorithms by

extensive simulations based on the measurements of an on-

demand video processing system, and then we investigate the

system performance on a small testbed.

A. Processing Delay

First, we evaluate the processing delay of videos in terms

of data size on mobile devices and video-clouds. We imple-

mented our video processing approach for object detection and

recognition based on Caffe [20], a deep learning framework

using convolutional neural networks, on both tablets (Nexus

9) and a video-cloud implementation (Dell Precision T7500

with GeForce GTX TITAN X 12 GB GPU) for processing

acceleration. We took several videos with different sizes using

the tablet and processed them on both the tablet and video-

cloud. Fig. 4a gives the comparison of the processing delay

between the tablet and video-cloud. From Fig. 4a, we can

see that GPU can greatly accelerate video processing. The

processing rate on the GPU is about 100MB/s, while the

processing rate of the smartphone is only about 2MB/s. Both

linearly increase with the data size of videos. When taking the

communication delay of videos into consideration, as shown

generated with different data sizes following normal distri-

butions with differentµandσ. To capture the heterogeneity

of the processing rate, the processing rates of mobile devices

and video-clouds are set uniformly and randomly to between

[γsd, sd]and between[γs c, sc], respectively, wheres d denotes

the maximum processing ratio for mobile devices ands c

denotes the maximum processing rate of video-clouds. Also,

the transmission rate between a mobile device and a video-

cloud is set uniformly and randomly to[γr, r]. The number of

videos|V| , the number of mobile devices |U d , t|he number of

video-clouds|U c |,r,µ,σ,γ,s d ands c are system parameters

for simulations. The default settings of these parameters are

V| |= 300, |U d =| 20, U| c = 3| ,r= 12MB/s,µ= 50MB,
σ= 20MB,γ= 0.6,s d = 2MB/s ands c = 100MB/s, where

the settings ofs d ands c correspond to the implementation

measurement in the previous section.

We evaluate the greedy algorithm and compare it with

the optimum achieved by an exhaustive search in various

settings. For each setting, we generate one hundred instances

according to the randomness of simulation setup. The two

solutions run on these instances. The performance is com-

pared in terms ofT max/T∗ to demonstrate how the greedy

algorithm approximates the optimum, and the value ofT max

is also illustrated. Fig. 5 demonstrates the effects of system

parameters on the performance of the greedy algorithm. For

each evaluated parameter, all other parameters use the default

settings. From Fig. 5a, we can seeT max/T∗ slightly increases

with the increased number of videos. When using 200 videos,

the greedy algorithm is less than 10% worse than the optimum,

and it is less than 20% when using 800 videos. The increase

in Fig. 4b, the completion time of processing each video
1600

1200

(offloaded from the tablet) on the video-cloud is still much

less than that of the tablet. Note that the specifications of

videos, such as resolution, frame rate and bit rate, may affect

the processing delay. However, mobile devices have similar

camera sensors and can be easily adapted to take videos with

the same specifications.

B. Greedy Algorithm vs. Optimum

1200

800

400

0

4 8 12 16 20 24

transmission rate (MB/s)

(a) effect ofr

800

400

0

100 90 80 70 60 50 40

. (%)

(b) effect ofγ

In order to evaluate the performance of the proposed al-

gorithms, we setup a simulation environment. The videos are

Fig. 6: Comparison between greedy algorithm and baseline in terms ofT max,
where the default setting is V| =| 300, U| d |= 20, U| c = 3|,µ= 50MB, σ=
20MB,r=12MB/s,s d = 2MB/s,s c = 100MB/s andγ= 0.6.

1.0 0
10 15 20 25 30 35 40

0
1 2 3 4 5 6 7

1.0 0
40 50 60 70 80 90 100

0 1.0 100 0

baseline

greedy

baseline

greedy

T
m

a
x
=

T
$

T
m

a
x
=

T
$

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

T
m

a
x
=

T
$

T
m

a
x
=

T
$

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

T
m

a
x
=

T
$

T
m

a
x
=

T
$

T
m

a
x
(s

)

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

T
m

a
x
=

T
$

T
m

a
x
=

T
$

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 408

250

200

150

100

250

200

150

100

250

200

150

100

[16] [12,16] [8,12,16] [4,8,12,16] [2,4,8,12,16]

vector of transmission rates (MB/s)

[16] [12,16] [8,12,16] [4,8,12,16] [2,4,8,12,16]

vector of transmission rates (MB/s)

1 5 10 30 60

time unit (s)

(a) effect of static transmission rates (b) effect of dynamic transmission rates (c) effect of time unit

Fig. 7: Comparison between adaptive algorithm and greedy algorithm in terms ofT max, where the default setting is V|=|100, U |
µ= 50MB,σ= 20MB,s d = 2MB/s,s c = 100MB/s,γ= 0.6,t= 5s, andR= [4,8,12,16].

d |= 10, U| c = 2|,

is caused by increased video offloading when there are more

videos to be processed. Correspondingly, when there are more

mobile devices in the network, each mobile device has fewer

videos to process and thus less video offloading. Therefore,

the greedy algorithm performs better as the number of mobile

device increases in Fig. 5b. When there is only one video-

cloud in the network, the greedy algorithm achieves the

optimum shown in Fig. 5c. The difference rises when the

number of video-clouds goes up, but it tends toflatten out

when the number of video-cloud increases further.

In Fig. 5d, the greedy algorithm performs close to the

optimum in the settings with different average video sizes.

Fig. 5e demonstrates the effect of transmission rates. When

the transmission rate increases, mobile devices tend to offload

much faster than the baseline that considers only processing

delay.

D. Adaptive Algorithm vs. Greedy Algorithm

The adaptive algorithm is designed for the scenarios where

the transmission rate varies during video processing. To model

the dynamics of the transmission rate, we also adopt a Markov

chain [21]. LetRdenote a vector of transmission ratesR=
[r0, r1, . . . , rl], wherer i < ri+1. The Markov chain moves at

each time unit. If the chain is currently in rater i, then it can

change to adjacent rater i−1 orr i+1, or remain in the current

rate with the same probability. Therefore, for a given vector,

e.g., of four rates, the transition matrix can be defined as
r0 r1 r2 r3

more videos to video-clouds as offloading videos costs less

than before. This leads to an increased deviation between the
r0 1/2

P= r1 1/3

1/2

1/3

0 0

1/3 0 .

T decrease. The completion time of video-clouds is deter- r3 0 0 1/2 1/2

greedy algorithm and the optimum, although bothT max and r2 0 1/3 1/3 1/3
∗

mined based on the processing delay and communication delay

of videos. When the processing rate of video-clouds increases,

the processing delay decreases and thus the greedy algorithm

performs better as shown in Fig. 5f. Moreover,T max/T∗ also

declines when mobile devices are more computationally

powerful as indicated in Fig. 5g, because fewer videos are

offloaded when mobile devices have higher processing rates.

The effect of the diversity of processing rates and transmission

rates is captured in Fig. 5h;i.e., such diversity leads to slightly

increasedT max and deviation from the optimum.

In summary, through extensive simulations, we can see

that the performance of the greedy algorithm is close to the

optimum in various settings (no more than 20% worse than

the optimum) and it is much less than the theoretical upper

bound as in (6).

C. Greedy Algorithm vs. Baseline

We also compare the greedy algorithm with abaseline

scheme that does not consider communication delay and

iteratively offloads a video from the mobile device that has

the maximum completion time to the video-cloud that has

the minimum. As illustrated in Fig. 6, the greedy algorithm

performs much better than the baseline. When the transmission

rate increases, the impact of the communication delay on the

completion time decreases and thus the difference between

these two algorithms narrows, as shown in Fig. 6a. Moreover,

the baseline is more sensitive to the increased diversity of

processing rates and transmission rates as indicated in Fig. 6b.

Therefore, we can conclude that the greedy algorithm that

considers both processing delay and communication delay is

r3 0 0 1/2 1/2

In the simulations, the transmission rate between mobile

device and video-cloud is initially set to a randomly selected

rate fromRand it dynamically changes according to the

transition matrix each time unitt. The greedy algorithm

determines video offloading and transmission sequence based

on the initially assigned transmission rates before processing

videos. Then, the simulation runs and produces the runtime

Tmax for the greedy algorithm. The adaptive algorithm runs

during video processing and determines video offloading dur-

ing runtime of simulations.

First, we compare the adaptive algorithm with the greedy

algorithm under static transmission rates. As shown in Fig.

7a, the greedy algorithm outperforms the adaptive algorithm

in various vectors of transmission rates. Moreover, the dif-

ference between the greedy algorithm and adaptive algorithm

expands with the increased diversity of transmission rates.

In the adaptive algorithm, video-clouds can only accept the

offload request after receiving previously offloaded video to

adapt to the variation of transmission rate. Therefore, when a

mobile device selects a video-cloud for offloading, the video-

clouds that are currently receiving videos are not considered.

However, the greedy algorithm makes offloading decisions

beforehand and considers every video-cloud at each step.

Therefore, the greedy algorithm performs better under static

transmission rates.

When transmission rates change dynamically, the perfor-

mance of the greedy algorithm and the adaptive algorithm

is shown in Fig. 7b, where the time unitt= 5s. When

transmission rates are more stable,e.g.,R= [16]or[12,16],

greedy
adaptive

greedy
adaptive

greedy
adaptive

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

T
m

a
x
 (
s
)

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801587 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 409

80

60

40

20

0
#1 #2 #3 #4
mobile devices

(a) testbed (b) sizes and distribu-
tion of videos

50

40

30

20

10

0
8 12

WiFi data rate (MB/s)

(c) completion time of dif-
ferent algorithms

video-clouds. However, the processing scheduling problem is

a strongly NP-hard problem. To deal with this, we designed

a greedy algorithm and proved the approximation ratio. To

handle the dynamics of the transmission rate between mobile

devices and video-clouds, we further proposed an adaptive

algorithm. Extensive simulations and experiments on a small

testbed show that, as expected, the performance of the greedy

algorithm is close to the optimum and much better than other

approaches, and the adaptive algorithm performs better when

Fig. 8: Performance of different algorithms on a small testbed.

the greedy algorithm performs better than the adaptive al-

gorithm. When transmission rates are more dynamic,e.g.,

R= [8,12,16],[4,8,12,16]or[2,4,8,12,16], the adaptive

algorithm outperforms the greedy algorithm. Fig. 7c gives the

performance comparison in terms of time unit of the Markov

chain. As short time intervals produce a dynamic transmission

rate during video processing, the adaptive algorithm performs

better when time interval is short, and vice versa.

In summary, as expected, the greedy algorithm is preferred

for the scenarios where the transmission rate is steady, while

the adaptive algorithm is more suitable for the scenarios where

the transmission rate is dynamic.

E. System Performance

We implemented an on-demand video processing system

on a small testbed that includes four Nexus 9 tablets and the

video-cloud implementation which are connected through a

WiFi router, as shown in Fig. 8a. Both the tablets and video-

cloud are running a same deep learning model using Caffe

for object detection on videos. The video-cloud can issue

queries with a targeted object to tablets. For video processing,

frames are extracted from a videos and then object detection

are performed on the frames.

The performance is measured under two different WiFi

data rates (i.e., 8MB/s and 12MB/s). Since the data rate is

stable in our test environment, oursystemperforms the greedy

algorithm rather than the adaptive algorithm to achieve the best

performance. We compare it tolocal(videos are processed

locally),cloud(all videos are offloaded to the video-cloud
for processing) andbaseline. Experiments are performed on

the transmission rate is more dynamic.

REFERENCES

[1] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: selective on-demand media retrieval from mobile
devices,” inIPSN, 2013.

[2] T. Yan, V. Kumar, and D. Ganesan, “Crowdsearch: exploiting crowds for
accurate real-time image search on mobile phones,” inMobiSys, 2010.

[3] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Tagsense: a
smartphone-based approach to automatic image tagging,” inMobiSys,
2011.

[4] Y. Wang, W. Hu, Y. Wu, and G. Cao, “Smartphoto: a resource-
aware crowdsourcing approach for image sensing with smartphones,”
inMobiHoc, 2014.

[5] Y. Hua, H. Jiang, and D. Feng, “Real-time semantic search using ap-
proximate methodology for large-scale storage systems,” inINFOCOM,
2015.

[6] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl,
“Energy characterization and optimization of image sensing toward
continuous mobile vision,” inMobiSys, 2013.

[7] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” inMobiSys, 2011.

[8] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” inMobiSys,
2013.

[9] P. Jain, J. Manweiler, A. Acharya, and K. Beaty, “Focus: clustering
crowdsourced videos by line-of-sight,” inSenSys, 2013.

[10] Z. Chen, W. Hu, K. Ha, J. Harkes, B. Gilbert, J. Hong, A. Smailagic,
D. Siewiorek, and M. Satyanarayanan, “Quiltview: a crowd-sourced
video response system,” inHotMobile, 2014.

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” inMobiSys, 2010.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” inINFOCOM, 2012.

[3] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu, “On exploiting dynamic
execution patterns for workload offloading in mobile cloud applications,”
inICNP, 2014.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

a small set of videos (16 clips with bit rate about 16Mbps

and frame rate 30fps, average size 15 MB). In order not to

[5]
elastic execution between mobile device and cloud,” inEuroSys, 2011.
F. Hao, M. Kodialam, T. Lakshman, and S. Mukherjee, “Online alloca-
tion of virtual machines in a distributed cloud,” inINFOCOM, 2014.

introduce any bias on these approaches, we distribute the same

number of videos, each with similar size, on each tablet. The

sizes and the distribution of the videos are shown in Fig. 8b.

As illustrated in Fig. 8c, oursystemoutperforms all other

approaches for both WiFi data rates. Note that the greedy

algorithm is optimal when there is one video-cloud in the

network as discussed in Section VI-B.

VII. CONCLUSION

In this paper, we investigated on-demand video processing

in wireless networks. We formulated the processing schedul-

ing problem,i.e., to process videos with the minimal query

response time in the network consisting of mobile devices and

[6] Q. Wang and K. Wolter, “Reducing task completion time in mobile
offloading systems through online adaptive local restart,” inICPE, 2015.

[7] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,” in
INFOCOM, 2015.

[8] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” inICCV, 2015.

[9] J. K. Lenstra, A. H. G. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,”Annals of Discrete Mathematics, vol. 1, pp. 343–
362, 1977.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” inMM, 2014.

[11] A. Fu, P. Sadeghi, and M. Médard, “Dynamic rate adaptation for
improved throughput and delay in wireless network coded broadcast,”
IEEE/ACM Transactions on Networking, vol. 22, no. 6, pp. 1715–1728,
2014.

cloud
local
baseline
system

d
a
ta

 s
iz

e
 o

f
v
id

e
s
 (

M
B

)

T
m

a
x
 (
s
)

